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ABSTRACT
Genome-wide association studies (GWAS), using single
nucleotide polymorphisms (SNPs), have yielded 110 non-
human leucocyte antigen genomic regions that are
associated with multiple sclerosis (MS). Despite this large
number of associations, however, only 28% of MS-
heritability can currently be explained. Here we compare
the use of multi-SNP-haplotypes to the use of single-
SNPs as alternative methods to describe MS genetic risk.
SNP-haplotypes (of various lengths from 1 up to 15
contiguous SNPs) were constructed at each of the 110
previously identified, MS-associated, genomic regions.
Even after correcting for the larger number of statistical
comparisons made when using the haplotype-method, in
32 of the regions, the SNP-haplotype based model was
markedly more significant than the single-SNP based
model. By contrast, in no region was the single-SNP
based model similarly more significant than the SNP-
haplotype based model. Moreover, when we included
the 932 MS-associated SNP-haplotypes (that we
identified from 102 regions) as independent variables
into a logistic linear model, the amount of MS-
heritability, as assessed by Nagelkerke’s R-squared, was
38%, which was considerably better than 29%, which
was obtained by using only single-SNPs. This study
demonstrates that SNP-haplotypes can be used to fine-
map the genetic associations within regions of interest
previously identified by single-SNP GWAS. Moreover, the
amount of the MS genetic risk explained by the SNP-
haplotype associations in the 110 MS-associated
genomic regions was considerably greater when using
SNP-haplotypes than when using single-SNPs. Also, the
use of SNP-haplotypes can lead to the discovery of new
regions of interest, which have not been identified by a
single-SNP GWAS.

INTRODUCTION
Multiple sclerosis (MS) is a complex genetic dis-
order,1 2 susceptibility to which involves the major
histocompatibility complex (MHC) on the short
arm of chromosome 6.3–8 In addition, on the basis
of several large genome-wide associations studies
(GWAS), analysing hundreds of thousands of single
nucleotide polymorphisms (SNPs), 110 non-MHC
risk-variants have now been identified as being
MS-associated.9–16 Nevertheless, despite the abun-
dance of these defined genetic associations, there
still exists a large amount of the MS genetic risk,
which remains unexplained (ie, the so-called herit-
ability gap). Thus, using Nagelkerke’s R-squared17

metric to assess the strength of association, one
large study reported that these 110 non-MHC risk-

variants accounted for 18% of the variance in
disease occurrence.16 This estimate only increased
to 27% after the MHC was included in the ana-
lysis.16 Using an alternative method for assessing
the strength of association, these authors estimated
that the 110 non-MHC risk-variants only
accounted for 20% of the sibling recurrence risk
(λS) and that this estimate increased to 28% when
the MHC effects were included.16

Such a large discrepancy between the variance
explained by GWAS identified SNP-associations and
the total expected genetic burden (ie, the missing
heritability) is a common finding in many complex
genetic disorders.1 2 In MS, however, a much
better accounting is anticipated.18 19 One possible
reason for this persistent gap may be the use of
single-SNPs rather than longer haplotypes to define
disease associations.9–16 Thus, a typical GWAS
interrogates approximately 500 000 SNPs in scat-
tered locations throughout the genome and identi-
fies those SNPs, which are significantly associated
with the disease. Although some of the SNPs iden-
tified in this manner may actually represent the
genetic alteration responsible for the disease associ-
ation, most of these SNPs merely ‘tag’ an allele of a
nearby gene (or a haplotype of a genetic region),
which is actually the basis of the observed disease
relationship. This type of association has been
referred to as a ‘synthetic’ association.20 However,
because each SNP can tag more than one haplo-
type, these synthetic associations are often weak,
require thousands of patients to uncover, and their
SNPs typically have a greater allelic frequency than
the underlying susceptibility allele.20 21 Thus, in
reality, these SNP associations only identify
genomic regions of interest for disease association.
Therefore, in the present study, we explore whether
the use of haplotype methods can reduce the herit-
ability gap compared with single-SNP methods
when these are both applied to the previously iden-
tified MS-associated genomic regions.15 16

MATERIALS AND METHODS
Study participants, genotyping and quality
control
The study cohort was assembled as a prospective
multicentre, multinational effort and included
18 872 controls and 11 376 cases with MS. The
cohort make-up, genotyping and quality control
methods have been described in detail previ-
ously.15 16 The various alleles in the human leuco-
cyte antigen (HLA) region on the short arm of
chromosome 6 were imputed for the entire study
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cohort (by AL) using the HLA imputation with attribute
bagging (HIBAG) method for the loci HLA A, B and C and for
the loci DRB1 and DQB1.22 In addition, phasing, including the
phasing for all five HLA loci as well as that for just the DRB1
and DQB1 loci, was done using a previously published and vali-
dated algorithm.23 24 Data access was granted by the Wellcome
Trust Case Control Consortium.

Statistical methods
Phasing
The SNPs used for phasing covered a span of 1 megabase (mb)
of DNA surrounding the SNP that had the most significant
disease association in each of the 110 non-MHC regions (identi-
fied on GWAS). Phasing was accomplished using an approach
similar to that of Clark.25 Thus, both methods identify
unequivocal haplotypes in an identical manner. However, unlike
Clark, we use a probabilistic approach to phasing, for which the
phasing output is independent of the order of data entry.21 In
fact, our method provides very stable and consistent phasing
estimates over short genomic windows of 2–15 SNPs.21 For
reasons of computational efficiency, the previous visual basic
algorithm was replaced by an R-project version,26 which was
highly concordant (>99%) with that reported earlier.21 In those
rare instances where the two algorithms lead to different
phasing choices, each of the haplotypes in the two possible
combinations were uncommon and the calculated likelihood of
each possible combination was approximately equal.

Briefly, haplotypes were phased at sliding windows of 2–15
SNPs in each of the 110 MS regions. Also for reasons of com-
putational efficiency, even-sized windows of more than four
SNPs were excluded. For each sliding window, for each individ-
ual, all possible pairs of haplotypes are considered. An individ-
ual was assigned a haplotype based on a three-pass algorithm. In
the first pass, unambiguous individuals (those who were homo-
zygotes or heterozygotes at only a single-SNP within the haplo-
type) were phased, thereby providing an initial set of identified
haplotypes. In the second pass, each of the remaining indivi-
duals was phased if their genotype could be produced only by a
single haplotype combination, which included either one or two
of the previously identified haplotypes. Individuals who had
more than one such possible haplotype combination were not
phased at this stage. The complete set of haplotypes from indivi-
duals who were phased the first and second passes was then
used to calculate the allele frequencies for all identified haplo-
types. In the third pass, remaining individuals were phased
based on the relative likelihood of each possible combination of
two haplotypes, which in turn was based on the allele frequen-
cies determined following the second pass. For the purpose of
calculating these likelihoods, potential haplotypes (not identified
in the first or second passes) were assigned an allele frequency
equal to a tenth of the smallest observed allele frequency for an
identified haplotype.

The choice of a maximum length of 15 SNPs for constructing
the SNP-haplotypes was made purely for reasons of computa-
tional efficiency as the phasing speed of the algorithm becomes
markedly prolonged with longer haplotype lengths.

Association testing
Disease association tests were undertaken for each of the
SNP-haplotypes (of differing lengths), which were constructed
at each SNP position over the 1 mb span of DNA, for each of
the 110 regions identified earlier in the published GWAS.15 16

Association tests, using Fisher’s exact methods, were conducted
for each SNP-haplotype according to three different genetic

models. These were the dominant, recessive and genotype
models (see online supplementary table S1).

Comparisons of single-SNPs to multi-SNP-haplotypes using
adjusted p values
We calculated the disease association for every single-SNP
(haplotype size=1) and for every multi-SNP-haplotype (haplo-
type size=2–15) in each of the 110 regions. In each region, the
top single-SNP ‘hit’ (most statistically significant variant) was
compared with the top multi-SNP-haplotype ‘hit’. The
multi-SNP-haplotype p values were Bonferroni-corrected for the
total number of haplotypes tested in the region, while the
single-SNP p values were corrected for the total number of
single SNPs tested in the region. Regions in which the two ana-
lysis methods (single-SNPs vs multi-SNP-haplotypes) yielded
adjusted p values that differed by more than two or three orders
of magnitude (ie, more that 100-fold or 1000-fold more signifi-
cant), were considered to favour the method that resulted in the
greatest adjusted statistical significance (figure 1).

Determining heritability
For the purposes of this data analysis, cases and controls were
split randomly into two halves. Disease-associated
SNP-haplotypes were identified in the training set (split A), and
cross-validated using these same haplotypes to assess heritability
in the test set (split B).

The p values for the OR for disease association were calcu-
lated for each haplotype at every SNP-position in the region and
adjusted by the false discovery rate (FDR) method of Benjamini
and Hochberg27 for the total number of comparisons in the
region. The first ‘hit’ was defined as the most significantly asso-
ciated SNP-haplotype (of any length up to 15 SNPs, including
length=1; ie, a single-SNP). If no SNP-haplotype was less than
the FDR maximum (set at 0.05), the region was excluded from
further analysis. Also, all SNP-haplotypes that possessed SNPs,
which overlapped (in position) with any SNP in this first ‘hit’
haplotype were excluded from further analysis. If the p value
for the most significant remaining SNP-haplotypes was below
the FDR maximum, then a second ‘hit’ was identified as the
most significant haplotype and again all haplotypes with over-
lapping SNPs were excluded from further analysis. This process
was repeated either until all remaining SNP-haplotypes exceeded
the FDR maximum for the region or until the number of asso-
ciated SNP-haplotypes identified in a region exceeded 10. For
comparison purposes, we also repeated the same process using
only single-SNPs (haplotype length=1) in each of the 110
regions.

Weights were assigned to each associated haplotype such that
heterozygous carriers were assigned a risk score equal to the
natural log of the OR of the (1 vs 0) genotype model (see
online supplementary table S1) at that location. By contrast,
homozygote carriers were assigned a risk score equal to the
natural log of the OR of the (2 vs 0) genotype model (see
online supplementary table S1) at that location (if such a model
was available).

Disease-associated haplotypes using SNP-haplotypes of any
length (up to 15 SNPs, including single-SNPs) and those using
exclusively single-SNPs were considered separately. For both
methods of defining haplotype-length, those SNP-haplotypes,
which were identified as being disease-associated by the above
procedure, were analysed collectively for their contribution to
the heritability of MS by their inclusion as independent vari-
ables, in a logistic linear model where the dependent variable
was the presence or absence of MS.
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For the HLA region of chromosome 6, SNP-haplotypes were
not used in this linear model despite the fact that these haplo-
types had very specific allelic associations in this genomic region
(see online supplementary material). Indeed, the SNP-haplotype
associations in this region of the genome are quite instructive
with regards to the importance of haplotype identification to
the understanding of genetic susceptibility for MS (see online
supplementary material). Moreover, the lessons derived from
this particular region (where many of the relevant alleles are
already well known) are likely to be especially applicable to
other regions (which are less well defined). As just one example
of this, the HLA haplotype of DRB1*1501/DQB1*0602, which
is strongly linked to the (a1) SNP-haplotype (see online
supplementary material), has long been associated with a
marked (and dose-dependent) increase in disease risk. However,
when this same HLA haplotype occurs coupled to either the
(a27) or the (a36) SNP-haplotype, the result seems to be, if any-
thing, protective rather than risky. By contrast, in those rare
individuals, who had the (a1) SNP-haplotype, but not the
DRB1*1501/DQB1*0602 haplotype, the increase in disease risk
is indistinguishable from that of other (a1) carriers (see online
supplementary material). Taken together, these observations
suggest that the increased disease risk is not due to either of
these alleles but, rather, to something else carried on the (a1)
SNP-haplotype (see online supplementary material). Other dis-
tinctive SNP-haplotype-genotype associations are also consid-
ered in the online supplementary material.

Nevertheless, because the actual disease associations for
alleles in the HLA region are better understood than in the
other genomic regions, and because alleles of the six classical
HLA genes can be imputed using the HIBAG method,22 the

actual disease-associated alleles, together with their interactions
with DRB1*1501, were used for the purpose of this analysis
(see online supplementary material). However, only those
reported associations and interactions that were confirmed in
the current data set for HLA alleles of the A, B, C, DRB1 and
DQB1 loci were included in this analysis (see online
supplementary material).

Nagelkerke’s R-squared was used as the measure to judge the
success of the classification for the 110 genomic regions and
HLA loci, separately and combined.

RESULTS
Multi-SNP haplotypes consistently outperformed the
single-SNPs, even after we Bonferroni-adjusted the significance
levels based on the greater number of multi-SNP-haplotype tests
conducted compared with those for single-SNPs. Thus, in 32
regions multi-SNP-haplotypes outperformed single-SNPs by
three orders of magnitude or more and in no region did
single-SNPs similarly outperform multi-SNP-haplotypes of any
length (figure 1). Similarly, if outperformance is considered to
be a difference by only two orders of magnitude, the
multi-SNP-haplotypes still consistently outperformed
single-SNPs (figure 1). Nevertheless, because there were many
more identified haplotypes at longer compared with shorter
SNP-haplotype lengths, those sets, which included these longer
SNP-haplotypes, were subjected to a much more stringent
Bonferroni correction and, as a result, sets including more than
nine SNPs sometimes didn’t perform as well compared with
single-SNPs (figure 1).

An example of the kind of improvements that can be made by
the use of multi-SNP-haplotypes, and as shown in table 1, the

Figure 1 The strength of the multiple sclerosis (MS)-associations comparing single-nucleotide polymorphisms (SNPs) to multi-SNP-haplotypes in
the 110 MS-associated regions identified by genome-wide association studies (GWAS) (1718). The designations haplotype-2 and haplotype-3 refer to
those circumstances in which the ‘top’ haplotype-association was more significant (adjusted) than the ‘top’ single-SNP-association by two or three
orders of magnitude, respectively. Similarly, the designations singleton-2 and singleton-3 refer to circumstances in which the ‘top’
single-SNP-association was more significant than the ‘top’ haplotype-association by two or three orders of magnitude, respectively. The y-axis
represents the total number of regions in which these particular circumstances occurred. The x-axis indicates the range of multi-SNP-haplotype sizes
considered. In all cases SNP-haplotypes outperformed single-SNPs. Because the sets of larger haplotype sizes had a much larger number of
identified haplotypes than the sets of smaller haplotype size, these sets were subjected to a much more stringent Bonferroni correction. As a result,
these larger sets didn’t perform as well compared with single-SNPs as those sets, which included haplotypes of nine SNPs or less.
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previously identified top single-SNP ‘hit’15 in a region on the
long arm of chromosome 6 was for SNP (rs11154801_A).
Possessing one or more copies of this SNP (compared with
having no copies) had an OR for disease association of 1.2 with
a p value of 2×10−18. Nevertheless, the most significant ‘hit’
overall for the region was a seven-SNP haplotype (table 1),
which did not include the SNP (rs11154801_A). This particular
multi-SNP-haplotype had an OR for disease association of 8.9
with a p value of 5×10−44. The most significant single-SNP
within this haplotype was (rs1475069_C), which had an OR of
1.2 and a p value of 3×10−16. This particular single-SNP was
the fourth most significant disease-associated SNP in the region,
it was also significant at a genome-wide level, and it is located
317 kilobases (kb) away from the top single-SNP ‘hit’
(rs11154801_A). Moreover, the most significant identified
SNP-haplotype, which included the risk SNP (rs11154801_A),
had a length of 3, an OR of 1.2 and an uncorrected p value of
8×10−19. Finally, the three SNP-haplotype including
(rs11154801_A) and the seven SNP-haplotype including
(rs1475069_C) were significantly disassociated from each other
by Fisher’s exact test. Thus, these two disease-associated
SNP-haplotypes are clearly identifying distinct genetic associa-
tions within the same genomic region.

By definition, the greater number of alleles in
multi-SNP-haplotypes compared with single-SNPs requires that
the range of allelic frequencies for the top ‘hits’ in the different
regions, in general, is shifted to lower haplotype frequencies for
the multi-SNP-haplotypes compared with single-SNPs. This
expected pattern of more low-frequency multi-SNP-haplotypes
compared with single-SNPs is evident in the data (figure 2).

In our analysis for determining the heritability, we identified
932 SNP-haplotypes of varying sizes from 102 regions as being
MS-associated (see online supplementary table S1). The average
probability that our algorithm correctly identified a person’s
SNP-haplotype combination (based on the haplotype frequen-
cies taken from the set of known diplotypes—see Methods) was
98%. Of these 932 MS-associated haplotypes, 66 (7%) were
single-SNPs and the remainder consisted of
multi-SNP-haplotypes of varying sizes (figure 3). From this set,
using the SNP-haplotypes of nine SNPs or fewer identified in

the 110 non-MHC regions yielded a Nagelkerke’s R-squared of
0.412 in the training set (split A). When HLA was included in
the model, this increased to R2=0.482. Using the same set of
SNP haplotypes identified in the training set (split A) for the
test set (split B), these numbers decreased to 0.289 and 0.377,
respectively (table 1). By contrast, when exclusively using
single-SNPs in the 110 non-MHC regions, the generalised linear
model yielded a Nagelkerke’s R-squared of 0.255 on the train-
ing set (split A) and when HLA was included in the model, this
increased to R2=0.344. In line with what was previously
reported,16 and similar to the circumstance for
multi-SNP-haplotypes presented above, these numbers decreased
to 0.185 and 0.291, respectively (table 1), when the same linear
model was run on the test set (split B). A reanalysis, which
included only the DRB1*1501 status as a representation for the
entire HLA region, did not alter the nature of these
relationships.

DISCUSSION
This study demonstrates, unequivocally, that SNP-haplotypes can
be used to fine-map the genetic associations within regions of
interest previously identified by single-SNP GWAS. Even after
adjusting the significance levels for the larger number of statistical
comparisons made when using the SNP-haplotype method, in 32
of 102 regions, the disease associations detected by
multi-SNP-haplotypes were at least 1000-fold more significant
than those detected by single-SNPs (figure 1). By contrast, in no
region was the single-SNP based model similarly more significant
than the SNP-haplotype based model (figure 1). Moreover, as the
example provided by table 1 indicates, the nature of the disease
associations identified, can be markedly altered, even within a
previously defined genomic region. Finally, the amount of the
heritability of MS explained by the associations in these 110
genomic regions was markedly improved using SNP-haplotype
methods compared with only single-SNPs (table 2).

Several factors might affect the heritability estimated such as
population stratification, the linkage disequilibrium (LD) struc-
ture, the allelic frequency, and the coding/non-coding status of
the variants and each of these require consideration. With
regards to population stratification, the potential impact is

Table 1 Chromosome 6 (long arm) associations*

SNPs† Haplotype
Control
Neg

Control
Pos

Case
Neg

Case
Pos OR p Value‡

Single-SNPs
rs11154801_A 1 7592 10 908 4212 7152 1.24 (1.18 to 1.30) 2×10−18

rs1475069_C 1 9444 9299 5036 6032 1.22 (1.16 to 1.28) 3×10−16

Multiple SNPs

rs7739635 _A
rs10223338_A
rs12202212_A
rs1475069_C 0001000 18 616 34 10 815 175 8.9 (6.1 to 13.2) 5×10−44

rs2038551_A
rs9399161_G
rs4896180_G

The SNP rs11154801_A is the top single-SNP ‘hit’ in the region. The SNP rs1475069_C is the top single-SNP ‘hit’ within the multi-SNP-haplotype but the fourth most significant
single-SNP ‘hit’ overall. These two SNPs are separated by 317 kb of DNA. The 95% CIs for the OR are shown in parentheses.
*In all cases the model selected was dominant.
†Letters designate the minor allele nucleotide at the SNP location in the control population. Thus, the letters, which follow each SNP’s so-called ‘rs ID’ number, indicate the allele that
was designated as the ‘1’ allele.
‡The p values presented have not been corrected for the total number of SNP-haplotypes or single-SNPs tested. The total number of SNP-haplotypes (of any length from 1 to 15 SNPs)
was 110 310. Therefore, the Bonferroni-corrected p value for the multi-SNP-haplotype is 6×10−39, which is still well below the uncorrected p value for the single-SNP.
SNP, single nucleotide polymorphism.
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Figure 2 The haplotype frequencies of the top ‘hits’ in cases and controls are shown on the x-axis (log-scale) in panels (A) and (B), respectively. In each
panel, the frequencies are shown for single-nucleotide polymorphisms (SNPs) (SNP-haplotype length=1) and for multi-SNP-haplotypes (SNP-haplotype
lengths=2–15). On the y-axis is shown the number (count) of different haplotypes that were present at the different mean haplotype frequencies.

Figure 3 Histogram of the different haplotype sizes for the 932
multiple sclerosis (MS)-associated single-nucleotide polymorphism
(SNP)-haplotypes identified at the 110 non-major histocompatibility
complex MS-associated genomic regions (see online supplementary
table S1). On the y-axis is the per cent of the total haplotypes
represented by each haplotype size. On the x-axis is the number of
SNPs included in each identified SNP-haplotype (ie, the haplotype size).

Table 2 Nagelkerke’s R-squared (R2) values for the different data
splits

R2

Excluding HLA
R2

Including HLA*

Single-SNPs
Split A 0.255 0.340
Split B 0.185 0.291

SNP-haplotypes
Split A 0.418 0.482
Split B 0.289 0.377

HLA alone
Split A – 0.130
Split B – 0.133

*The HLA models were based on previously published allelic associations4 6 7 in
addition to an association with the DQB1*0502 allele (see online supplementary
material). Consequently the same set of alleles and allelic interactions was used for
both splits.
HLA, human leucocyte antigen; SNP, single nucleotide polymorphism.
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mitigated in two ways. First, we confined our analysis to only
those genomic regions, which had been previously (and consist-
ently) identified by GWAS, after correction for population strati-
fication effects, as having an established association signal
present (1718). Second, population stratification in these
regions will impact single-SNPs and SNP-haplotypes equally and
should not, therefore, affect our comparison of single-SNPs to
SNP-haplotypes. Nevertheless, in any genome-wide study, which
seeks to identify novel regions of association signal using
SNP-haplotype methods, a correction for population stratifica-
tion is imperative. These studies are currently underway and, in
them, we intend to use two different adjustment methods. In
the first, we will use a subset of the Wellcome Trust Case
Control Consortium population, in which the controls and the
cases are derived from the same population. In the second, we
will undertake a principal components analysis to identify the
relevant population factors and then use these factors in a linear
modal to adjust for population stratification effects.

With regards to LD, again, this structure will be the same for
SNPs and SNP-haplotypes and should not, therefore, affect our
comparison of single-SNPs to SNP-haplotypes. Also, alleles at
single-SNPs are more frequent than alleles for SNP-haplotypes
(figure 2), and therefore are more likely to give higher heritabil-
ity estimates. Consequently, the fact that we found higher herit-
ability estimates with SNP-haplotypes, despite their relative
rarity, actually strengthens our finding that SNP-haplotypes
perform better than single-SNPs. Finally, SNP-haplotypes with
window-sizes of 2–15 SNPs cover regions of DNA of approxi-
mately 20–300 kb and generally include (within their span) the
exons from one or more genes. By contrast, most single-SNPs
come from intronic or non-coding regions (eg, see online
supplementary material). Indeed, this particular distinction is
probably what accounts for the better performance of
SNP-haplotypes compared with single-SNPs that we report here
(see online supplementary material).

In the recent International Multiple Sclerosis Genetics
Consortium study,16 credible sets of SNPs (rather than
single-SNPs) were proposed for a handful of regions (four
regions with two to four SNPs are shown in table 3 from that
publication) and it is possible that an analysis using sets of
single-SNPs in a region might perform better than an analysis
using just a single-SNP. It is, therefore, important to note that
our method did, in fact, allow for such sets of single SNPs to
contribute to heritability. Thus, our method looked at a
window-size of 1 mb in each region and it allowed sets of up to

10 single-SNPs to be chosen (ie, included in the analysis) per
region. In addition, our method allowed for the identification of
shorter haplotypes, a method that permits the ‘clustering’ of
related haplotypes that carry a similar disease risk. Also, as
noted earlier, our method is limited by computational limita-
tions to considering haplotypes of 15 SNPs or less in length.
Despite this, however, our method can be modified easily to
cover larger or smaller portions of the genome, for example, by
simply using a SNP-set that spans a greater or lesser genomic
distance. We have not yet explored this possibility.

Nevertheless, despite the improvements provided by our
SNP-haplotype method, a considerable amount (over 60%) of
the heritability of MS still remains to be explained. As noted
earlier, at a theoretical level, we expect much better accounting.
Thus, no more than 8.5% (and probably much less) of the
general populations in the northern hemisphere can possibly be
genetically susceptible to getting MS and, very likely, the large
majority of patients with MS fall into this susceptible
group.18 19 There are, at least, four potential reasons why the
heritability of MS remains elusive.

First, it is expected that, in the future, there will be more
genomic regions identified as being disease associated based on
single-SNP GWAS analyses. Therefore, inclusion of these regions
in this analysis may improve matters. However, because these
additional regions, generally, will have been identified with
increasingly weaker associations, they will likely contribute rela-
tively little to the overall accounting of the heritability of MS.
Second, it is apparent from the HLA region on chromosome 6
that alleles of certain sets are tightly linked to very specific
SNP-haplotypes and, moreover, there can be several
disease-associated haplotypes at a single locus (see online
supplementary material). This situation leads to many apparent
(or real) interactions, which take place between different alleles
at one locus and between alleles at different loci (see online
supplementary material). If this pattern of complexity in the
HLA region is repeated at many or all of the 110 different loci
identified so far, then the multi-SNP haplotype method presented
here (in which we didn’t explore either the possibility of multiple
disease-associated haplotypes at a single locus or the possibility
of such interactions), even though a substantial improvement
over single-SNP methods, may still be an inadequate representa-
tion of the genetic susceptibility in these genomic regions. Third,
and related to the second point, it may be that only certain com-
binations of susceptibility haplotypes from different genomic
regions actually lead to genetic susceptibility for developing MS.

Table 3 Chromosome 13 associations*

SNPs† Haplotype
Control
Neg

Control
Pos

Case
Neg

Case
Pos OR p Value‡

Multiple SNPs
rs3116605_G 1010 18 718 26 11 059 161 10.5 3×10−43

rs17074558_A
rs279072_G
rs1928123_C

Split A 1010 9558 12 5522 77 10.9 9×10−22

Split B 1010 9360 14 5537 84 10.1 5×10−23

*In all cases the model was: one copy of the haplotype vs zero copies of the haplotype.
†Letters designate the minor allele nucleotide at the SNP location in the control population. If the haplotype has a one at a particular location, this indicates that this haplotype is has
the minor SNP allele at this location; zero indicates the opposite.
‡The p values presented have not been corrected for the total number of SNP-haplotypes or single-SNPs tested. The total number of SNP-haplotypes (of any length from 1 to 15 SNPs)
was 26 180. Therefore, the Bonferroni-corrected p value for the multi-SNP-haplotype is 1×10−38, which is still well below the uncorrected p value for the single-SNP.
SNP, single nucleotide polymorphism.
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Finally, it may be that some low-frequency haplotypes are
strongly MS-associated but because of the expected reduction in
the observed OR that occurs with synthetic associations,20 21

the most significant single-SNP in a region may not achieve
genome-wide significance and, thus, important disease associa-
tions may be missed. For example, of the 110 non-MHC
regions that reached genome-wide significance, only one was
located on chromosome 13.16 Nevertheless, in one particular
region on this chromosome, 49 mb removed from the region
previously identified,16 the most significant ‘hit’ within a 1 mb
span surrounding the SNP rs3116605_G was for a
four-SNP-haplotype, which included this SNP (table 3). This
particular multi-SNP-haplotype had an OR of 10.5 for disease
association with a p value of 3×10−43. Moreover, this finding
was clearly replicated in both of the random splits of the data
(table 3). If other such strong associations exist in other uniden-
tified parts of the genome it may be necessary to reconsider
how genomic regions of interest are identified for complex
genetic diseases. Perhaps it would be better to screen the entire
genome by a multi-SNP-haplotype analysis rather than by using
a single-SNP GWAS. Alternatively, because of the computational
difficulties involved, perhaps the whole genome could still be
screened using short-length multi-SNP-haplotypes at a threshold
such that approximately 500–1000 regions of greatest interest
are identified. Subsequently, then, these regions of greatest inter-
est could be subjected to a multi-SNP-haplotype analysis pre-
sented here, which would make the overall computations much
more tractable.

Previously, we compared our SNP-haplotype phasing
method21 to another such method, SHAPEIT-2,28 which itself
combines the phasing methods of SHAPEIT29 and
IMPUTE-2.30 When using SNP-information, which spanned a
total distance of 2 mb, the outputs from SHAPEIT-228 and our
method21 were characterised by alternating peaks and valleys of
concordance, which varied between 75% and over 99%
depending upon the region being phased. Even within the
regions of high concordance, however, some phasing discrepan-
cies between methods did occur. In every such case, the
SNP-haplotype method predicted combinations that were more
probable than the SHAPEIT-2 predictions (often by several
orders of magnitude), even when the haplotype frequencies
were estimated from the SHAPEIT-2 output.21 In addition, in
the regions of poor correspondence between the two methods,
SHAPEIT-2 had a similarly low correspondence with itself when
the start of the phasing for the 2 mb region was shifted by 25
SNPs.21

At a theoretical level, it might be argued that using very small
window sizes of two or three SNPs ignores important phasing
information from flanking data. It is for this reason SHAPEIT-2
and similar algorithms specifically incorporate this flanking
information28–30 and, in fact, LD has sometimes been reported
at distances of 500 kb or more. For example, in the HLA region
of the genome, the (a2) and (a6) SNP-haplotypes exhibit an
extended LD, which stretches for 2.7 mb, and which, in each
case, is significantly associated with disease (see online
supplementary material). Indeed, such an extended LD implies
a strong positive selection pressure for the haplotype carrying
this particular suite of alleles. Nevertheless, the internal incon-
sistency of SHAPEIT-2 outweighs any such theoretical advan-
tage of using larger window sizes.21 Importantly also, excluding
window sizes of two and three SNPs did not alter our results
and, in many cases, these short haplotype sizes were sufficient
to explain the disease risk, which was also explained by longer
haplotypes (of which the shorter segments were, almost always,

subsets with the same phasing). Consequently, the inclusion of
smaller window sizes in the analysis is important, especially
given the relative computational ease of running phasing and
performing association tests on small compared with large
window sizes.

Naturally, the fact the SHAPEIT-2 phasing over 2 mb
windows (a size generally accepted to be suitably large for this
phasing method) is inconsistent with itself when the phasing is
started 25 SNPs later, doesn’t prove that our method is accurate.
However, because this inconsistency (for SHAPEIT-2) was
prevalent throughout the 2 mb region21 and was not confined
to the edges, it cannot be dismissed as merely an ‘edge effect’.
Moreover, in those short genomic regions where SHAPEIT-2
was highly consistent with itself (ie, more than 99% concord-
ant), our method was also concordant (>99%) with
SHAPEIT-2. Thus, in these ‘high-concordance’ regions, the two
methods independently confirm the accuracy of the phasing by
each method. The phasing methods only disagreed in regions
where SHAPEIT-2 also disagreed with itself.21 Moreover, in
contrast to SHAPEIT-2, our probabilistic method provided very
stable and consistent phasing estimates over short genomic
windows of 2–15 SNPs throughout the entire 2 mb phasing
window.21

Again, this doesn’t prove that our method is accurate in these
‘low-concordance’ regions; rather it only proves that
SHAPEIT-2 is inaccurate in these regions. Indeed, it is nearly
impossible to compare any phasing method with the ‘actual’
phasing. Even whole genome sequencing methods cannot yield
accurately phased genotypes of more than 1000 base pairs.31

Furthermore, the currently accepted industry standard in phased
data uses the methods of SHAPEIT-2 to establish the ‘correct’
phasing and, consequently, cannot serve as an appropriate gold
standard by which to compare the accuracy of any alternative
phasing method. In these circumstances, one is forced to choose
a phasing method based on other considerations.

For all of these reasons, therefore, we chose to use our
phasing method applied to short haplotypes of 2–15 SNPs for
our analysis. Regardless, however, it is important to recognise
that the decision about which phasing method to use makes no
difference to the results of the haplotype analysis presented
here. Any errors introduced by incorrect phasing (either by our
method or by SHAPEIT-2) will only serve to blur the associ-
ation signal and will lead to findings of no association when, in
fact, an association exists (ie, to a false negative result). By con-
trast, when a significant association is found, the accuracy of the
phasing method used becomes irrelevant.

In summary, the use of phased SNP-haplotypes is clearly
superior to the use of single-SNPs in the detection of genetic
associations in MS and is also likely to be for other complex
genetic disorders. Nevertheless, even using this SNP-haplotype
method, a substantial amount of the heritability remains to be
explained. There are several possible reasons for this unex-
plained variance in disease expression and each of these possibil-
ities will need to be systematically investigated in the future.
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