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AbsTrACT
background early detection of lung cancer to allow 
curative treatment remains challenging. cell-free 
circulating tumour (ct) Dna (ctDna) analysis may aid in 
malignancy assessment and early cancer diagnosis of 
lung nodules found in screening imagery.
Methods the multicentre clinical study enrolled 192 
patients with operable occupying lung diseases. Plasma 
ctDna, white cell count genomic Dna (gDna) and 
tumour tissue gDna of each patient were analysed by 
ultra-deep sequencing to an average of 35 000× of the 
coding regions of 65 lung cancer-related genes.
results the cohort consists of a quarter of benign lung 
diseases and three quarters of cancer patients with all 
histopathology subtypes. 64% of the cancer patients 
are at stage i. gene mutations detection in tissue gDna 
and plasma ctDna results in a sensitivity of 91% and 
specificity of 88%. When ctDna assay was used as the 
test, the sensitivity was 69% and specificity 96%. as for 
the lung cancer patients, the assay detected 63%, 83%, 
94% and 100%, for stages i, ii, iii and iV, respectively. 
in a linear discriminant analysis, combination of ctDna, 
patient age and a panel of serum biomarkers boosted 
the overall sensitivity to 80% at a specificity of 99%. 29 
out of the 65 genes harboured mutations in the patients 
with lung cancer with the largest number found in TP53 
(30% plasma and 62% tumour tissue samples) and 
EGFR (20% and 40%, respectively).
Conclusion Plasma ctDna was analysed in lung 
nodule assessment and early cancer detection, while an 
algorithm combining clinical information enhanced the 
test performance.
Trial registration number nct03081741.

InTroduCTIon
Lung cancer is the leading cause of cancer-related 
deaths, accounting for an estimated 1.6 million 
deaths each year globally.1 The prognosis of lung 
cancer is dependent on the stage of diagnosis, with 
5-year overall survival rate decreasing dramatically 
from stage IA (85%) to stage IV disease (6%).2 3 It is 
clear that to screen and diagnose lung cancer earlier 
will save lives.3

Current method for lung cancer screening is 
low-dose computed tomography (LDCT).4 The 
National Lung Screening Trial demonstrated a 
20% reduction in lung cancer mortality for LDCT 

compared with X-ray and a 6.7% all-cause mortality 
reduction.5 However, the imagery technique often 
results in indeterminate nodules6 and the false posi-
tive results lead to unnecessary invasive diagnostic 
procedures and increased deaths from avoidable 
surgeries.7

Traditionally, biopsy is used to determine malig-
nancy of lung nodules. This approach has significant 
limitations as being difficult or even impossible. 
Molecular tests using pervasive biofluid samples, 
so-called liquid biopsy, are promising and urgently 
needed in the thoracic clinic, as demonstrated in 
thyroid nodules assessment where a number of 
molecular tests are available.8 In pulmonary nodule 
malignancy assessment, there is also the report of 
blood proteomics biomarkers by the PANOPTIC 
team.9

In theory, circulating tumour (ct) DNA (ctDNA) 
is exquisitely specific for an individual’s tumour 
as by definition somatic mutations are identified 
by their presence in tumour DNA and absence in 
matched normal DNA. This bypasses the issues 
related to the false-positivity encountered with 
other biomarkers, such as protein biomarkers. This 
specific and promising early detection method has 
garnered tremendous attention for cancer in general 
and lung in particular.10 11 The growing interest has 
drawn attention from international societies such as 
the International Association of the Study of Lung 
Cancer (IASLC) that has issued statement regarding 
liquid biopsy in the management of non-small cell 
lung cancer (NSCLC).12

Early detection of cancer by blood test was shown 
possible even with microscopic tumour proceeding 
radiography.13 Most recently, a preliminary analysis 
of early to mid-stage (stages I–III) patients with lung 
cancer as part of the Circulating Cancer Genome 
Atlas (CCGA) pan-cancer study was reported.14

In addition to mutation analysis, ctDNA 
epigenetics has also been evaluated and researched 
for early cancer detection. The studies examined 
DNA methylation regulation15 or the hypermeth-
ylation of the promoter regions of genes16 for the 
potential biomarkers of lung cancer detection.

In this study, we report a multicentre clinical trial 
result on genetic alterations in patients that undergo 
surgical resection with either benign nodules or 
early to midstages lung cancer. By using ultra-deep 
next generation sequencing (NGS) sequencing to 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 Ju

n
e 1, 2025

 
h

ttp
://jm

g
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

13 A
p

ril 2019. 
10.1136/jm

ed
g

en
et-2018-105825 o

n
 

J M
ed

 G
en

et: first p
u

b
lish

ed
 as 

http://jmg.bmj.com/
http://orcid.org/0000-0002-2019-2092
http://crossmark.crossref.org/dialog/?doi=10.1136/jmedgenet-2018-105825&domain=pdf&date_stamp=2019-09-09
NCT03081741
http://jmg.bmj.com/


648 Peng M, et al. J Med Genet 2019;56:647–653. doi:10.1136/jmedgenet-2018-105825

Cancer genetics

detect very low-frequency ctDNA in a background of mostly 
non-tumour-derived cfDNA and comparing with the tumour 
tissue, we develop an assay to distinguish benign versus malig-
nant lung lesions and detect the early cancer pathogenesis.

MeThods
Patients and clinical data
The study design of the clinical trial ( ClinicalTrial. gov) is 
prospective, cross-sectional, longitudinal and observational. It is 
conducted at four tier A hospitals in China to recruit patients 
with lung occupying diseases identified by imaging evalua-
tion to be treated by surgery. Briefly, consecutive patients with 
benign lung nodules or cancers of stages I–III planned for 
surgical resection were assessed for eligibility, and those met the 
criteria (online supplementary table S1) were approached by the 
study team for consenting. The ones that signed the informed 
consent form were enrolled, and biological samples (two tubes 
of 10 mL peripheral blood prior to surgery collected in a cell-
free DNA [cfDNA] BCT blood collection tube [Streck, Omaha, 
Nebraska, USA] and 10 slides of formalin-fixed paraffin-em-
bedded (FFPE) tissues from surgery) and related clinical data 
including serum biomarkers were collected.

Basic demographic and clinical data were collected using the 
IRB-approved clinical protocol and case report form. The initial 
discovery of the space occupying lesions was done through 
thoracic CT scan, and the read out was provided by the radiolo-
gists at the clinical site of the hospitals. The final diagnosis of the 
malignancy status of the nodules and cancer TNM staging was 
established by the pathologists of the hospital using the resected 
tissues.

sequencing analysis
The above-collected DNA samples were analysed by our propri-
etary Sec-Seq technique as described previously.17 Briefly, blood 
sample were processed to separate the plasma from blood cells 
by centrifugation. cfDNA, gDNA of white cell count (WCC) 
and FFPE were extracted using QIAamp Circulating Nucleic Aid 
Kit, DNA mini kit, DNA FFPE Tissue kit, respectively (Qiagen, 
Hilden, Germany). The concentration of extracted DNA was 
measured using Qubit 3.0 dsDNA high-sensitivity assay (Life 
Technologies, Carlsbad, California, USA).

Capture probes were designed for 65 cancer-associated genes 
covering 241 kb genomic regions (online supplementary table S2) 
and synthesised by IDT (Michigan, USA). Indexed libraries were 
constructed using KAPA HyperPlus Kit (KK8514). Barcoding 
was employed to reduce noise. Postcapture multiplexed libraries 
were amplified with Illumina backbone primers for 16 cycles of 
PCR using 1× KAPA HiFi Hot Start Ready Mix and sequenced 
on Illumina NovaSeq platform (Illumina, California, USA) at 
Novogen (Nanjing, China).

Horizon’s Partners Spike-in control (Horizon, Cambridge, 
UK) was used in a serial dilution (from 0.0005 to 1) using the 
wild-type reference genome and the provided reference stan-
dard. Reference variants include EGFR (L858R and T790M), 
KRAS (G12D), NRAS (Q61K and A59T) and PIK3CA (E545K) 
or NA12878 (12 mutations) and NA24385 (29 mutations).

bioinformatics data analysis
Reads with quality score <30 or having >5% of positions 
differ from the rest of the reads targeting the same region were 
removed. The results were then mapped to the human reference 
genome (hg19) using BWA (V.0.7.15-r1140). We used the start 
mapping positions, the length and the dual barcode on both side 

of merged paired-end fragments to form reads groups amplified 
from every primary cfDNA molecules and to identify incorrect 
base produced due to PCR errors.

Variant calling for single nucleotide variation or insertion/
deletion was performed using samtools mpileup tool (V.1.3.1). 
For ctDNA samples, a variant was selected as a candidate 
somatic mutation when: (1) two distinct paired reads (each 
redundantly sequenced at least three times) contained the muta-
tion, (2) effective reads depth >500 (captured primary cfDNA 
molecules >500) and (3) the corresponding allele frequency in 
WCC is less than 1%.

Mutation annotation and classification
The variants were called by SnpEff (V.4.3o) and annotated 
by COSMIC (V.85), ExAc, ClinVar and 1000 Genome. The 
following variants were eliminated: (1) intergenomic or intronic 
(except for splicing junction); (2) synonymous; and (3) variant 
allele frequency (VAF) <0.2% in ctDNA or <1% in FFPE 
samples. Previously reported and confirmed pathogenic muta-
tions in the clinical samples of lung cancer of all human races 
and ethnicities will be considered as lung cancer related.

statistical methods
Data were summarised using descriptive statistics. Fisher’s 
exact test was used to compare any two subgroups. Wilcoxon 
rank-sum test was used to compare median age between any two 
subgroups (stages I, II and III) or mutant groups (mutant vs wild 
type).

Linear discriminant analysis (LDA) was performed on 
improving mutation analysis. The model considers the age of 
the patients, ctDNA mutations and the serum biomarkers. It 
was developed using the 10-fold cross-validation by dividing the 
samples into training and validation subsets. The test sensitivity 
and specificity was calculated, and the area under the receiver 
operator curve (AUROC) was plotted.

resulTs
Patient demographic and clinical analysis
In total, 192 patients with pulmonary space occupying lesions 
(136 malignant and 56 benign) pathologically diagnosed and 
surgically treated were included in this analysis. These patients 
were recruited from four clinical sites: Xiangya No. 2 Hospital 
in Changsha, Hunan Province, Beijing University Shenzhen 
Hospital, Shenzhen, Huizhou People’s Hospital, Huizhou, and 
No.2 People’s Hospital in Shenzhen, Guangdong Province.

The average age is 56.5 (range 26–79) years, and male propor-
tion is 59%. These numbers are 50.1 (26–73) years and 55% for 
the benign group, 59.1 (27–79) years and 60% for lung cancer 
group with a statistically significant difference. No statistically 
significant difference in terms of smoke status (32% vs 35%) and 
family history (7% vs 8%) was found between the two groups 
(table 1).

For the benign lesions, the most common diseases diagnosed 
are pneumonia (n=14, 25%), tuberculosis (n=12, 21%), pulmo-
nary fibrosis (n=4, 7%) and necrosis granuloma (n=3, 5%).

Lung cancer distribution was 87, 29 and 17 in stages I, II and 
III, respectively. The average size of the nodules for lung cancer 
patients is 2.9 (range 0.5–9.0) cm, and for each subgroup: (1) 
stage I: 2.2 (0.5–4.0) cm; (2) stage II: 3.8 (1.0–7.0) cm; and 
(3) stage III: 5.0 (1.3–9.0) cm (table 2). The average size of the 
nodules in the benign group is 2.3 (0.3–6.0) cm, which is statisti-
cally smaller than that of the malignant group.
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Table 1 Patient demographics

Patients

non-cancer Cancer Total

P valuen=56 n=136 n=192

Sex, n (%) 0.53

  Male 31 (55.4) 82 (60.3) 113 (58.9)

  Female 25 (44.6) 54 (39.7) 79 (41.1)

  Average age (range) 50.1 (26–73) 59.1 (27–79) 56.5 (26–79) 1.27E-07

Smoking history, n (%) 0.68

  Yes 18 (32.1) 48 (35.3) 66 (34.4)

  No 38 (67.9) 88 (64.7) 126 (65.6)

Family history, n (%) 0.83

  Yes 4 (7.1) 11 (8.1) 15 (7.8)

  No 52 (92.9) 125 (91.9) 177 (92.2)

Lung nodule size (mm, average max 
dimension)

23.3 29.4 27.6 0.04

Table 2 Lung cancer histological diagnosis and stages
number of 
patients (percentage)

Average nodule size (mm, 
largest dimension)

Pathological diagnosis

  Adenocarcinoma 100 (73.5) 24.3

  Squamous carcinoma 28 (20.6) 49.8

  Small cell lung cancer 1 (0.7) 18

  Others 7 (5.2) 22.3

Clinical stage

  I 87 (64.0) 22

  II 29 (21.3) 39

  III 17 (12.5) 52.1

  IV 3 (2.2) 21

Stage IV lung cancer was to be excluded according to the trial 
design, but due to the fact of late coming of pathological result, 
we have samples from three patients of this stage collected 
and analysed. The data for these samples are not statistically 
meaningful and therefore are included for completeness in the 
online supplementary tables but not taking into account in the 
result tables and figures in the main text.

All of the patients are with solitary pulmonary nodules, except 
for two patients who had two nodules each that are malignant.

Genetic profiling and mutation burden
For each patient, three biospecimen samples including plasma 
ctDNA, WCC and FFPE tumour tissue were sequenced. For 
ctDNA, the average sequencing depth is 35 000 with 1350 
unique reads after deduplication.

In total, 312 occurrences and 274 unique somatic mutations 
were found in 29 genes from either plasma ctDNA or tissue 
DNA in 120 cancer and 5 benign cases (online supplementary 
table S3).

In the benign lesions, 2 out of 56 patients (3.6%) had four 
non-driver gene mutations in ctDNA, and three patients (5.4%) 
had two non-driver mutations in FFPE samples.

Among the lung cancer patients, 88% (120 out of 136 
patients) were found to harbour at least one mutation in ctDNA 
or tumour tissue. When analysed by stage of cancer, the class, 
that is, whether driver or non-driver mutation, and number of 
mutations increase as the stage advances (figure 1).

Mutations were found in 9 known lung cancer genes of ALK, 
BRAF, EGFR, HER2, KRAS, MET, NRAS, PIK3CA and ROS1 
(figure 2) out of the 12 genes defined as drivers for lung cancer.18 

The most commonly mutated genes in the patients with lung 
cancer are TP53 (44%) and EGFR (35%) (online supplementary 
figure S1).

The most commonly occurred mutation is EGFR L858R 
(found in 24 samples) followed by EGFR exon 19 deletion (in 
15 samples). The largest number of mutations was found in a 
patient who harboured 15 mutations.

Concordance between ctdnA and tumour tissue
Concordance is defined as at least one gene mutation is the same 
in both the plasma ctDNA and the FFPE tumour tissue gDNA of 
a patient. When completely no mutations were found in both the 
blood ctDNA and tissue gDNA, it is also considered as concor-
dant of the two samples.

Among the 136 malignant cases, the overall concordance 
rate is 27%. Concordance was higher in the driver genes, 46%. 
The shared mutation rate increases as the stage of the cancer 
advances: 14%, 48%, 41% and 67% at stage I, II, III, and IV, 
respectively (online supplementary figure S2).

Comparison with serum biomarkers
A panel of six serum protein tumour biomarkers was also anal-
ysed, which has a sensitivity of 51% with a specificity of 83% 
(table 3). These markers include NSE, CYFRA 21–1, CEA, 
ProGRP, CA-125 and SCC. When the most sensitive marker of 
CYFRA 21–1 was considered alone, the sensitivity was merely 
25% at a specificity of 95% (table 3).

In comparison, the profiling by ctDNA showed a higher sensi-
tivity in detecting lung cancer. The sensitivity increases as the 
stage advances and ctDNA outperform the serum biomarkers in 
all stages (figure 3).

linear discriminant lung cancer algorithm
The mutation profiling classifies the lung nodules from benign to 
malignant (figure 1). The benign samples harbour very little to 
no mutations. The cancer patients have increasing level of muta-
tions both in terms of category and numbers as stage progresses. 
From stage I to III, there are more mutations found, and they are 
more often in driver genes.

For lung cancer detection, the overall sensitivity of plasma 
ctDNA was 69% at the specificity of 96% (table 3). According 
to cancer stages, the sensitivity rate is 63%, 83% and 94% for 
stages I, II and III, respectively (figure 3).

We further conducted an LDA where patient age, smoking 
status and serum protein markers were considered (online 
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Figure 1 lung cancer gene mutation burden in benign and various stages of patients. Mutation types: c1: no mutation found; c2: one non-driver 
mutation found; c3: one driver mutation found; c4: both driver mutation and non-driver mutation found; c5: more than one non-driver mutation found.

Figure 2 Driver mutation distribution in patients with lung cancer 
patients. (a) Plasma ctDna. (B) FFPe gDna. ctDna, circulating tumour 
Dna; gDna, genomic Dna.

Table 3 Lung nodule malignancy prediction diagnostic test 
performance

description
no. of 
patients sensitivity (%) specificity (%)

Plasma ctDNA and FFPE 192 91 88

ctDNA mutation (average of all 
stages)

192 68 96

Stage I lung cancer 87 63 96

Stage II lung cancer 29 83 96

Stage III lung cancer 17 94 96

Panel of six serum biomarkers 
(BMs)

175 51 83

LDA model of ctDNA and BMs (all 
stages)

174 80 99

ctDNA. circulating tumour DNA; FFPE, formalin fixed paraffin embedded; LDA, linear 
discriminant analysis.

supplementary figure S2). The combined model of ctDNA muta-
tions and serum biomarkers improved the sensitivity and speci-
ficity to 80% and 99%, respectively (table 3).

dIsCussIon
Lung cancer screening recommended by the guidelines targets 
populations at high risk of developing lung cancer, such as 

patients aged above 55 years, heavy smokers and having 
chronic obstructive pulmonary disease (COPD) and with 
family history of lung cancer. In general, by definition of 
50–500 mm3,6 screening by imagery techniques could result in 
about 30%–40% indeterminate nodules that need to be further 
evaluated. In our cohort, we have >60% nodules in this size 
range making it an urgent need for malignancy assessment.

Our patient population drawn from major hospitals in 
southern and central China has a median age of 56.5 years, 
just above the threshold for lung cancer screening. The clin-
ical outcome confirmed the age of above 55 years as a risk 
factor for lung cancer: the median age of the patients with 
benign nodules (50.1 years) was about 10 years younger than 
those having lung cancer (median age of 59.1 years). Although 
not strictly a screening population, our cross-sectional cohort 
drawn from the consecutive patients with sign and symptom 
revealed pulmonary nodules of both benign or malignant 
nature represents a closer step towards high-risk screening.

Smoking status and family history were not significantly 
different between the benign and the malignant cases in our 
cohort. This result is somewhat uncommon given that the 
role of smoking in lung cancer is considered documented. 
However, our cohort may not be large enough to observe 
the effect, especially when considering our cases (early stage 
cancers) and controls (benign lung lesions) are not the typi-
cally studied previously.

Many potential explanations could still be explored. On one 
hand, our Chinese cohort has 41.1% of women, which has less 
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Figure 3 lung cancer detection rate by ctDna, serum biomarkers and lDa model per stage. Model=lDa model. ctDna, circulating tumour Dna; lDa, 
linear discriminant analysis.

of smokers. Gender distribution also corroborates: women are 
more in the benign (44.6%) than the cancer group (39.7%). 
On the other hand, the impact of smoking should be consid-
ered more broadly as an environmental factor than tobacco 
smoking alone. For example, the time spent on Chinese-style 
cooking could be a potential risk. Unfortunately, no such data 
were collected. As a proxy, however, the gender distribution 
difference could be explored since women usually spends 
more time in the kitchen. While we have more male patients 
in the cancer group (about 60%), the opposite is true for the 
benign group, which has less (about 55%).

On the potential interaction of smoking and genes, although 
there are studies about the association of smoking and tumour 
driving gene mutations, such as EGFR, ALK, KRAS and TP53 
genes (reviewed in refs 19–22), these are usually studied in 
patients with late-stage cancer, while ours is heavily centred 
on the early stage patients (>85% for stages I and II). It is 
shown that histopathology, gender and ethnicity could also 
impact the mutation profile of smoking versus non-smoking 
lung cancers.19

It is reported that tumour burden of lung cancer corre-
sponds to its size.23 Our data confirm that the size of the 
nodule relates to malignancy and progression. The average 
tumour size increases from 22 mm in stage I to 38 mm in stage 
II and to 50 mm in stage III (table 2). However, there is no 
significant difference between a benign nodule and that of the 
stage I cancer (tables 1 and 2).

The concordance rate between tissue and corresponding 
plasma ctDNA also reflects the challenge of early cancer liquid 
biopsy. Our study is heavy in stage I patients (64%, table 2) 
which has a rate of 32% and causes the overall rate of 36%. 
The rate increases as stage advances—up to the highest of 78% 
and the average of stages I–III is 53%. In CCGA, a set of 73 
early to midstage (stages I–III) lung cancer samples showed 
a similar rate of 59% (95% CI 47% to 70%).13 In another 
very small study of 31 paired lung cancer tissues and plasma 
DNA samples with 10 000-fold ctDNA sequencing depth, the 

concordance of mutation between tumour tissue DNA and 
ctDNA was merely 3.9%.24 Ours is more like CCGA in that 
we both sequenced ctDNA to the depth >40 000×. Another 
meta-analysis has also put the pooled sensitivity in the range 
of 60%s.25

The gene mutations shared between the plasma ctDNA 
and the FFPE tumour tissue increase as the lung cancer stage 
advances. This is in alignment with the previous report that 
stage IV tumour has the highest concordance,26 as well as 
that as the tumour is getting larger, the amount of DNA 
fragments it sheds into the blood stream will increase.23 27 
In regards to the cases where there is a discordance between 
mutations in plasma ctDNA and tissue, many factors could 
be contributing.

For the mutations found in tissue but not ctDNA samples, 
it could be due to the challenge of the weak ctDNA signal 
at early stage28 29 like the case of our cohort. The kinetics 
of ctDNA in the circulation and hence the timing of blood 
sampling in relation to tissue sampling may have influence that 
is not yet well understood. The effect of ageing induced clonal 
haematopoiesis or ageing clonal expansion30 could also play 
a role. In addition, there is report that leukocytes31harbour 
and release oncogenic gDNA into the blood and therefore may 
have impact on the detection of somatic mutations. All these 
issues will be further studied.

In terms of the mutations found in ctDNA but not in tumour 
tissue, we believe the most likely explanation is the issue of 
intertumour and intratumour heterogeneity.32 33 Blood sample 
is more homogeneous and could provide a holistic view of the 
genetic profile released in the plasma ctDNA by the tumour, 
while tissue sampling is localised to some specific clone or 
clones of the cancerous lesions.

Another issue to be watched for in ctDNA analysis is the 
noisy background of the cfDNA. The majority of variations 
found are from the WBC, a phenomenon called clonal hema-
topoiesis.34 For this reason, the ctDNA studies should include 
the matched WCC sequencing such as ours.
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Although somatic mutations showed strong feasibility of 
detecting malignancy and staging the cancer by plasma ctDNA, 
there more factors to be considered. Therefore, combining 
clinical and genomic features improved the test performance 
as shown by our LDA modelling (table 3). Integrated clas-
sifiers have also been explored in terms of plasma protein 
biomarkers such as the ones tested by some panel components 
in our cohort.35 One study involving 60 patients with NSCLC, 
40 patients with COPD and 40 healthy controls showed that 
combining the serum cfDNA concentrations and integrity and 
CEA improves sensitivity to 93.3%.36

Liquid biopsy starts moving into cancer clinics in therapy 
selection.37–40 A very recent cohort study of over 300 patients 
with advanced stage lung cancer using ctDNA and/or matched 
tumour tissue NGS mutation testing guidance for therapy 
selection showed the utility of liquid biopsy in increasing the 
positivity of drug selection and treatment outcome.39 Another 
single-centre study of 102 patients investigated the role of 
ctDNA in detecting driver gene or other actionable mutations 
for lung cancer therapy precision and resistance management 
including serial sampling, in the context where tissue biopsy is 
limited or could be unavailable.40 Another study identified 17 
miRNA species in the exosomes of the blood that are differ-
entially expressed in cancer (both NSCLC and SCLC) and 
controls.41

Early detection of lung cancer using blood samples is 
emerging, and similar level of detection performance as ours 
has been reported.13 14 The CCGA study reported a sensitivity 
of 54% and specificity of 98% for early-stage cancer detection 
in 127 patients with lung cancer. The potential use of ctDNA 
for early detection of other cancers has also been reported.42 43

There are, however, a number of limitation and challenges. 
First of all, the sample sizes of the early detection studies 
are usually small especially the number of healthy controls. 
Second, ctDNA amount correlates with cancer stage.44 There-
fore, the consensus is that ultra-deep sequencing of 40 000× 
is required to detect the low-frequency mutations in the 10 mL 
blood. Finally, the less-than-expected driver mutation concor-
dance between ctDNA and tumour DNA may reflect genetic 
heterogeneity and indicate tumour evolution45 suggesting that 
other types of genes and mutations should be considered as 
well.
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