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ABSTRACT

VACTERL association is a condition comprising
multisystem congenital malformations, causing severe
physical disability in affected individuals. It is typically
defined by the concurrence of at least three of the
following component features: vertebral anomalies (V),
anal atresia (A), cardiac malformations (C), tracheo-
oesophageal fistula (TE), renal dysplasia (R) and limb
abnormalities (L). Vertebral anomaly is one of the most
important and common defects that has been reported
in approximately 60—95% of all VACTERL patients.
Recent breakthroughs have suggested that genetic
factors play an important role in VACTERL association,
especially in those with vertebral phenotypes. In this
review, we summarised the genetic studies of the
VACTERL association, especially focusing on the genetic
aetiology of patients with vertebral anomalies.
Furthermore, genetic reports of other syndromes with
vertebral phenotypes overlapping with VACTERL
association are also included. We aim to provide a
further understanding of the genetic aetiology and a
better evidence for genetic diagnosis of the association
and vertebral anomalies.

OVERVIEW OF VACTERL ASSOCIATION
VACTERL association is a condition with multisys-
tem congenital malformations: Vertebral anomalies
(V), anal atresia (A), cardiac malformation (C),
tracheo-oesophageal fistula (TE) with or without
oesophageal atresia, renal dysplasia (R) and limb
abnormalities (L).! 2 It was first named as VATER
(without ‘C’ and ‘L) association in 1973.> The
prevalence of VACTERL/VATER association is
between 1/7000 and 1/40 000.*°

As there is no available objective laboratory test
for its diagnosis, VACTERL association is diagnosed
totally based on the clinical manifestations men-
tioned above. Most clinicians and researchers
require the presence of at least three component fea-
tures for diagnosis. Besides, due to its heterogeneous
phenotype and the abundance of overlapping
defects of other syndromes, VACTERL association is
typically considered a diagnosis of exclusion®® with
no clear evidence for an alternative or overlapping
diagnosis such as Coloboma, Heart anomaly, Atresia
of choanae, Retardation of mental and somatic
development, Genital hypoplasia, Ear abnormalities
(CHARGE) syndrome, DiGeorge syndrome and
Pallister—Hall syndrome. The presence of other fea-
tures not typically seen in VACTERL association
may suggest other disorders. Thus, a physical exam-
ination and family history are essential to rule out
potentially overlapping diagnoses. It is worth men-
tioning that 5-10% patients with Fanconi anaemia

(FA) have birth defects meeting the diagnosis of
VACTERL  association  with  hydrocephalus
(VACTERL-H).” % It is suggested that FA with
VACTERL-H should be treated separately from the
VACTERL association because of the core character-
istics of FA such as haematological anomalies and
skin pigmentary changes, the different frequencies
of VACTERL-associated phenotypes and the prog-
nosis and therapeutic intervention.

Although the clinical criteria for VACTERL asso-
ciation appear to be straightforward, the overlap-
ping in either clinical manifestation or genetic
finding is challenging for clinicians and geneticists.
The CHD7 gene mutation, which is proved to be
associated with CHARGE syndrome, may also be
found in patients diagnosed with VACTERL associ-
ation, even CHARGE syndrome is clinically
excluded.'? Besides, most of the conditions listed
are monogenic disorders. Careful genetic evaluation
may help ruling out these conditions. In this review,
we listed the related monogenic diseases that share
two more overlapping manifestations and their
genetic findings (table 1). We propose that(1) these
syndromes as well as these candidate genes should
be considered in diagnostic and genetic studies in
VACTERL association; and (2) VACTERL syndrome
remains a diagnosis of exclusion following a
thoughtful clinical evaluation and consideration of
genetic testing for overlapping syndromes.

Prior studies have estimated that 90% of the
patients diagnosed with VACTERL association had
three or fewer phenotypes (referred to as
VACTERL-like association) and <1% of patients
had all six anomalies.* Although the frequency of
the six clinical features (CFs) varies, vertebral
anomalies is the most common observation in many
cohorts of VACTERL association, which have been
reported in approximately 60-95% of affected indi-
viduals.” 393 Additionally, vertebral anomalies are
the most prevalent findings in the first-degree rela-
tives of the probands in some cohorts,>* 3° thus
highlighting the importance of vertebral anomalies
as a major diagnostic feature for VACTERL associ-
ation. In this review, we will summarise the genetic
studies of the VACTERL association with an
emphasis on vertebral anomalies.

Vertebral anomalies

Vertebral anomalies in VACTERL association can
be classified as (1) failure of formation, such as
hemivertebrae, butterfly or wedge-shaped verte-
brae; (2) failure of segmentation such as
vertebral bars, fused vertebrae and block vertebrae;
and (3) a combination of these two features, result-
ing in a mixed deformity.*® *7 Rib anomalies such
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Table 1 Monogenic diseases overlapping with VACTERL association
Overlap Characteristic features beyond
Syndrome OMIM Locus Gene Vertebral anomalies malformations  VACTERL association Reference
Fanconi anaemia 227650; 16q24; Xp22  FANCA; Same phenotype with V, A, CTE, R, L  Haematological anomalies; Holden et a/'®
with VACTERL-H 300514 FANCB,etc.*  VACTERL but lower pigmentary changes;
frequency hydrocephalus
Alagille syndrome 118450  20p12; JAGT; Mostly butterfly vertebra, V, C, R Jaundice with conjugated Turnpenny and
1p12-p11 NOTCH2 occasionally hyperbilirubinemia; dysmorphic Ellard™
hemivertebrae, fusion of facies; posterior embryotoxon and
vertebrae retinal pigmentary changes
Basal cell nevus 109400 9q22; 1p32;  PTCHT; Multiple fusion of Vv, L Odontogenic keratocysts of the Oostra and Maas;'®
syndrome 10g24-925 PTCH2; SUFU  vertebral bodies and ribs jaw; palmar or plantar pits; Pino et al'®
bilamellar calcification of the falx
cerebri; basal cell tumours
Baller-Gerold 218600 8q24 RECQL4 Rib fusion and flat V,A, CGR L Craniosynostosis; microcephaly Murthy et al'"’
syndromes vertebrae
DiGeorge syndrome 188400 22q11 TBX1 Hemivertebrae V,CR L Thymic abnormality;conotruncal Tsirikos et al:'®
(22911.2 deletion cardiac anomaly; facial Maggadottir and
syndrome) dysmorphism; hypocalcaemia Sullivan'®
Feingold syndrome 164280  2p23-24 N-MYC Absence of the fifth V,C, TE, R, L Microcephaly; Celli et al®®
sacral vertebra and brachymesophalangy
fusion of C5-C7in a case
McKusick—Kaufman 236700  20p12 MKKS Vertebral anomalies in V,C L Hydrometrocolpos; gastrointestinal ~ Knowles et a/*'
syndrome one case malformations
CHARGE syndrome 214800 8q12 CHD7 Idiopathic scoliosis C, TE,R Coloboma; choanal atresia/ Hsu et al;?
without vertebral stenosis;hypoplasia/aplasia of Verloes?
anomalies semicircular, etc.
Pallister—Hall 146510  7p14.1 GLI3 NA A CGR L Hypothalamic hamartoma; bifid Demurger et al**
syndrome epiglottis; craniofacial
abnormalities
Townes—Brocks 107480 16q21.1 SALL1 NA A CR L Dysplastic ears with hearing Sudo et a/*®
syndrome impairment; intellectual disability
Holt—Oram syndrome 142900 12q24 TBX5 NA CL NA Goldfarb and
Wall2014%
Hemifacial 164210 14932 NA Hemivertebrae, fusion of V, C Craniofacial anomalies; central Beleza-Meireles
microsomia (OAVS) vertebrae nervous system defects: visual and et al’’
hearing impairment
TAR syndrome 274000 1921 RBMSANA NA CR L Thrombocytopenia Tassanoet a/*®

*Numbers of genes been implicated in the pathogenesis associated with Fanconi anaemia.?®

A, anal atresia; C, cardiac malformations; CHARGE, Coloboma, Heart anomaly, Atresia of choanae, Retardation of mental and somatic development, Genital hypoplasia, Ear
abnormalities; L, limb abnormalities; NA, not available; OAVS, oculo-auriculo-vertebral spectrum; R, renal anomalies; TAR, thrombocytopenia-absent radius; TE, tracheo-oesophageal
fistula; V, vertebral anomalies; VACTERL, vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities

(L); VACTERL-H, VACTERL association with hydrocephalus.

as rib fusion and increased or decreased number of ribs are
commonly accompanied with vertebral anomalies. In some
studies, rib anomalies may occur without vertebral anomal-
ies.” 3% 3% 39 Although patients with anorectal malformations
may be have dysplastic sacral vertebrae, it is not clear whether
these should be regarded as a vertebral anomalies component
for diagnosis of VACTERL syndrome.? Clinical signs of scoli-
osis or kyphosis may be the first sign of vertebral anomalies
when VACTERL association is suspected.*® Radiology is needed
for discerning vertebral and rib anomalies.

As an example, we present a 2-year-old Chinese boy with
VACTERL association. He was born with oesophageal atresia
that was surgically corrected 4 days later. He had an uneventful
infancy until his mother found him with a hump at lower waist
a year later. Spinal X-ray and CT scan found a left hemivertebra
between L3 and L4, and a right hemivertebra between L5 and
S1 (figure 1), which caused evident lumbar scoliosis. He also
had an extra thoracic vertebra and an extra pair of ribs without
clinical symptoms. Abdominal ultrasound examination revealed
horseshoe kidney without impairment of his renal function. He
underwent resection of both hemivertebrae with internal fix-
ation and recovered well postoperatively.

GENETIC STUDIES ON VACTERL ASSOCIATION

The aetiology of VACTERL association is not well understood
(figure 2). As its phenotypes are too heterogeneous to be
defined as a syndrome, and there is no major gene for this con-
dition, thus it is still referred to as an ‘association’. The familial
clustering phenomenon suggests a genetic role in its
causality.>* #! #2

X-linked VACTERL association by Z/C3 mutation

So far, the ZIC3 gene has been demonstrated to cause X-linked
VACTERL association. Different types of ZIC3 mutations,
including point mutations, deletions and polyalanine expansion,
have been reported to be responsible for both VACTERL or
VACTERL-like association.*** Cardiac defects are most com-
monly found as ZIC3 has important function in cardiac devel-
opment and mutations in ZIC3 also cause X-linked heterotaxy
(MIM#306955);* *¢ 47 anal atresia is present in most patients
with ZIC3 mutations; vertebral anomalies are not commonly
observed and demonstrated phenotypic variability.** In animal
models, Zic3 knockout mice mimic the human heterotaxy and
cardiac phenotype with occasional vertebral/rib anomalies.
Zic3expression was present at all stages of embryonic
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Figure 1 Radiology of a 2-year-old
boy diagnosed with VACTERL
association. Preoperative spinal X-ray
(A) and CT scan (B) revealed a left
hemivertebra between L3 and L4, and
a right hemivertebra between L5 and
S1 that was fused with S1 vertebra
(white arrows). R, right side of the
body; VACTERL, vertebral anomalies
(V), anal atresia (A), cardiac
malformations (C),
tracheo-oesophageal fistula (TE),
renal dysplasia (R) and limb
abnormalities (L).

development within the anterior pre-somitic mesoderm but not
in the developing anal region. Thus, anal atresia was not
reported in Zic3-deficient mice,*® which differs from humans
where anal atresia is also prevalent with ZIC3 mutations.

Sonic hedgehog pathway in VACTERL association
SHH gene has been implicated as the key inductive signal in pat-
terning of the ventral neural tube, the anterior—posterior limb
axis and the ventral somites.*® Studies on animal models indi-
cate that sonic hedgehog (Shh) pathway is important for
VACTERL association. Kim et al*’ °° identified the first animal
model that recapitulated the human VACTERL syndrome by
knocking out genes (Shh and Gli) in Shh pathway. With differ-
ent genes of the Shh signalling pathway affected, the mutant
mice display various combinations, ranges and severity of the
VACTERL phenotypes, implying a dosage-dependent effect.
Furthermore, a VACTERL-like phenotype was reported in
murine with a novel hypomorphic mutation in the Intraflagellar
Transport Protein 172 (Ift172) gene.’! The Ift172gene encodes
a component of the intraflagellar transport, which appears to
play an active role in Shh signalling, and Ift proteins are
required for both Gli activator and Gli repressor function.’* 3
To the best of our knowledge, SHH or GLI3 mutations have
not been identified in VACTERL patients.’* In humans, SHH
mutation may cause more severe VACTERL phenotypes.
Nowaczyk et al’® reported a patient with holoprosencephaly 3
and SHH haploinsufficiency who suffered from sacral anomalies
(cleft S1, hemivertebra at S2 and absence of the rest of the
sacrum and coccyx), genitourinary abnormality, multiple seg-
ments of bowel atresia and limb anomalies. Although this
patient has a distinctive diagnosis, the phenotypic features
overlap with VACTERL association. There is a possibility that
SHH mutation causes these overlapping phenotypes.

Enviro-
mental
Factors

Genome

/

A

Epigenome

AN

Genotype

| VACTERL Association |
Y

| Vertebral anomalies |

»

Phenotype

¥

¥

Figure 2  General view of genetic findings and vertebral
manifestations in VACTERL association. Mitochondrial, mitochondrial
dysfunction; SNVs, single-nucleotide variants; VACTERL, vertebral
anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-
oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities (L).
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Some genes that play roles in Shh pathway have been
reported to be associated with VACTERL association. A hetero-
zygous de novo 21bp deletion (c.163_183del) in the exon 1 of
the HOXD13 gene,>® a downstream target of SHH,*” was iden-
tified in a 17-year-old girl, who was diagnosed with VACTERL
association without vertebral anomalies. Another patient with
rib anomalies diagnosed with VACTERL association was found
with a 451 kb deletion at chromosome 3q28, which contains a
single LPP gene.>® This gene encodes LIM domain containing
preferred translocation partner in lipoma that has been shown
to bind PEA3, an ETS domain transcription factor that has a
role in regulating the SHH pathway.’® Moreover, CNV (micro-
deletions) as well as point mutation in FOXF1 gene have been
identified in patients with VACTERL phenotypes.** *° In animal
models, Foxf1 has been found to be downregulated in Shh—/—
mice®® °! and the Foxflheterozygotes have been shown to
display tracheo-oesophageal atresia and fistulas.®> ® Although
HOXD13, LPP and FOXF1 mutation were sporadic findings in
individuals,®* ®* these studies argue in favour of that SHH
pathway dysfunction is associated with VACTERL association.

Table 2 Candidate genes and CNVs in VACTERL association

Candidate gene mutations and CNVs

Several candidate gene mutations and CNVs have been reported
to be related to VACTERL association (summarised in table 2).
So far, these candidate gene mutations and CNVs listed are
found mostly in sporadic cases, which need further large sample
verification or functional experiments to confirm their
pathogenicity.

Although the genetic aetiology of VACTERL association has
been far from established, previous studies did reveal some genetic
mutations that can account for one or a few of the six CFs (table
2). For example, DLL3 gene, which encodes a ligand for the
Notch signalling pathway that coordinates somitogenesis,® has
been found to cause block vertebrae in a Caucasian male
VACTERL patient.®” Saisawat et al°® identified recessive mutations
in the TNF receptor-associated protein 1 (IRAP1) gene in three
families with VACTERL association. They also proved that Trap1
gene is highly expressed in the renal epithelia of 13.5-day-old
mouse embryos and its mutations contribute to renal dysplasia.

Intriguingly, mutations of the same gene may cause variable
expressivity among VACTERL patients, even within the same

Chromosome Vertebral

region Gene Mutation Function Inheritance Manifestations anomalies Overlap syndrome Reference

16p13.3 TRAP1 p.1253V and Missense Homozygous/ V,A CTER Hemivertebrae - Saisawat et al*®

p.L525F* compound with rib anomalies
heterozygous

9g21.13 PCSK5 p.C1624fs Frameshift Heterozygous  V, C, R, L Hemivertebrae - Nakamura et a/”'

mutation (inherited-fat)

16024.1-924.2  FOXF1 p.G220C Missense/ De novo V, A CTE Butterfly vertebrae  ACD/MPV Stankiewicz et al;>®

deletion Hilger et al*®

1941 - - Duplication De novo V, A C TE R Butterfly vertebrae Hilger et al”?

8g24.3 - - Duplication De novo V,A CTE R Butterfly vertebrae - Hilger et al”

13g31.2-gter - = Deletion De novo V,A R L Butterfly vertebrae  — Dworschak et a/®®
17p13.3 - - Deletion NA V,A CL Butterfly vertebrae  Miller-Dieker syndrome  Ueda et a/™*

19913.2 DLL3 p.G269A Missense Heterozygous  V, C, R, L Block vertebrae Spondylocostal Giampietro et a/®’

(inherited-mat) dysostosis type |
13q33.2-qter - = Deletion De novo Vv, A Block vertebrae = Dworschak et a/®®
22q11.2 - - Duplication De novo V,A R Fusion vertebrae 22q11.2 duplication Schramm et a/”
(L4-L5) syndrome; DiGeorge
syndrome
Y - - Deletion in Yq  NA V, AR, L Block and - Bhagat’®
and duplication hemivertebrae in
in Yp lumbar
18910-q11.2 = = Duplication De novo V, AR L Dysplastic lumbar - Felix et a/;”’ van
and sacral der Veken et a/’®
vertebrae, NO
detail
10923.31 PTEN p.H61D Missense De novo V,C TE L Rib anomalies Cowden syndrome Reardon et al*®
(13 pairs of ribs)

3028 LPP - Deletion De novo V, C, TE, R Rib anomalies - Arrington et al:®
Hernandez-Garcia
et al®

5q11.2 - - Deletion De novo V, A C No detail - de Jonget al”®

19p13.3 = = Deletion De novo/ V,A C TE R L No detail = Peddibhotla et al”

inherited-mat

2g31.1 HOXD13 - Deletion De novo ACL Not reported Brachydactyly-syndactyly ~ Garcia-Barcelo

syndrome et al®

10024.32 FGF8 p.G29_R34dup;  In-frame Heterozygous A, C, TE, R, L Not reported Kallmann syndrome Zeidler et al*°

p.P26L duplication;
missense

*Four cases of TRAP1 mutations have been reported and the only case with vertebral anomalies is listed.
A, anal atresia; ACD/MPV, alveolar capillary dysplasia with misalignment of pulmonary veins; C, cardiac malformations; L, limb abnormalities; NA, not available; R, renal anomalies; TE,
tracheo-oesophageal fistula; V, vertebral anomalies; VACTERL, vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R)

and limb abnormalities (L).
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family. Dworschak et al®® identified chromosome 13q deletions

in two patients with VACTERL phenotypes. The girl was born
with perineal fistula, renal hypoplasia, bilateral triphalangeal
thumbs and oligodactyly, butterfly vertebrae and cerebral anom-
alies, and died at 10 months of age. The second patient, a male
child, suffered from perineal fistula, block vertebrae at C2-C3
and C4-C5-Cé6 and bilateral hearing loss. PcskS gene has been
identified as a candidate gene of VACTERL association in mice.”®
Nakamura et al”! reported a Japanese VACTERL boy with eighth
thoracic hemivertebra having a frameshift mutation of PCSKS,
while his healthy father also shared the same mutation.
Peddibhotla et al’* reported eight patients with chromosome
19p13.3 microdeletions and six of them fulfilled the diagnostic
criteria for VACTERL association. Among the six VACTERL
patients, one patient has vertebral anomalies while her two chil-
dren, although with VACTERL association, are free from verte-
bral anomalies. These phenomena imply other modification
factors desperate for further investigation in this condition.

Chromosomal aberrations

Chromosomal aberrations also contribute to VACTERL associa-
tions. Several case reports have been published that describe
chromosomal anomalies in VACTERL patients as Felix et al’’
and Brosenset al®' reviewed previously. However, chromosomal
aberrations are not included here as they also contribute to the
occurrence of congenital malformations beyond what is typically
observed in VACTERL association.

Mitochondrial dysfunction
Damian et al®* first reported an A to G transversion in the mito-
chondrial NP3243 mutation in cystic kidney of a VACTERL child.
Spinal radiograph showed multiple cervical and thoracic vertebral
wedging, fusion and fission. She also had limb abnormalities,
cardiac malformations and renal anomalies. This child belonged to
a family in which other members had mitochondrial encephalo-
myopathy, lactic acidosis, and stroke-like episodes syndrome and
chronic progressive external ophthalmoplegia, which suggests
mitochondrial dysfunction may contribute to VACTERL syn-
drome.®? Stone et al®* studied a cohort of 62 patients with
VACTERL association and none of the affected children had meas-
urable levels of the NP 3243 mutation. A few authors have previ-
ously reported an association of VACTERL association in patients
with mitochondrial disorders known as complex IV respiratory
chain deficiency.®**” Overall, four of the five individuals pre-
sented with vertebral anomalies; three showed oesophageal
involvement; two had anal atresia and two patients presented with
additional minor dysmorphic features. Different combinations of
other multiple congenital malformations have also been reported
in a series of children with respiratory chain deficiency, leading to
the hypothesis that in these patients congenital anomalies might
result from an abnormal development during embryogenesis
through either a lack of ATP or an alteration of apoptosis con-
trolled by the mitochondrial machinery. However, it is also pos-
sible  that  mitochondrial  dysfunction and  congenital
malformations in the patient described here are both secondary to
an as yet unidentified process.®® In conclusion, whether mutation
of mitochondrial dysfunction causes VACTERL association is still
controversial. Some clinical signs and symptoms that may be not
common in patients with VACTERL association, including pro-
gressive muscle weakness, characteristic patterns of cardiac, neuro-
logical and exocrine dysfunction,®” may suggest a potential
existence of mitochondrial dysfunction.

In summary, the aetiology of VACTERL association appears to
be heterogeneous, suggesting that it may be a complex condition.

Besides the gene mutations and CNVs mentioned above, some
other factors such as intronic mutations or epigenetic factors
may also play important roles in this condition. Environmental
factors including maternal diabetes’® and exposure to statins,”"
which may associated with congenital anomalies, may play a
significant role in the pathogenesis of VACTERL syndrome.

CONCLUSION

VACTERL association is a rare and complex condition with highly
heterogeneous aetiology and manifestations. At the present time,
there appears to be evidence for genetic factors contributing to
VACTERL syndrome including single-gene mutations, CNVs and
structure variants to mitochondrial dysfunction. Future studies are
needed to identify epigenetics and environmental causes for
VACTERL syndrome. Targeted genetic testing can contribute to
eliminating overlapping diagnoses from further consideration in
an affected individual. Notably, a given variant may explain a par-
ticular CF of VACTERL association, so it may be worth trying to
investigate this sophisticated association by focusing on one of the
six component features. “Vertebral anomalies’ is one of the core
component features of VACTERL association, including formation
and segmentation vertebral. Wu et al’* recently described a com-
pound heterozygous model in which a null allele mutation in com-
bination with a common haplotype of TBX6 causes congenital
scoliosis, suggesting that genetic factors play an important role in
vertebral anomalies. Additionally, we suggest that the genetic
mutations may contribute to vertebral anomalies in a certain syn-
drome. Alternatively, VACTERL association may be caused by a
‘two-hit” model in which two genes or one gene in combination
with an epigenetic factor may elicit all associated features.”” In the
future, combination of new genomic technologies such as whole-
exome sequencing, whole-genome sequencing, comparative
genomic hybridisation array and whole-genome bisulfite sequen-
cing may well reveal a surprising number of additional contribut-
ing loci, delineating the entire spectrum of the VACTERL
association in humans.
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