Skip to main content
Viewing from:
Department GEZ-LTA Erasmushogeschool
Intended for healthcare professionals
Subscribe
Log In
More
Log in via Institution
Log in via OpenAthens
Log in via CCMG
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?
Basket
Search
More
Search for this keyword
Advanced search
Latest content
Current issue
Archive
Authors
About
Topic collections
Search for this keyword
Advanced search
Close
More
Main menu
Latest content
Current issue
Archive
Authors
About
Topic collections
Subscribe
Log in
More
Log in via Institution
Log in via OpenAthens
Log in via CCMG
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?
BMJ Journals
More
You are viewing from:
Department GEZ-LTA Erasmushogeschool
You are here
Home
Archive
Volume 52, Issue 9
Haplotype-based approach to known MS-associated regions increases the amount of explained risk
Email alerts
Article metrics
Article menu
Article
Text
Article
info
Citation
Tools
Share
Rapid Responses
Article
metrics
Alerts
PDF
PDF +
Supplementary
Material
Complex traits
Original article
Haplotype-based approach to known MS-associated regions increases the amount of explained risk
Online download statistics by month:
Online download statistics by month: July 2015 to April 2025
Abstract
Full
Pdf
Jul 2015
237
65
29
Aug 2015
394
95
50
Sep 2015
396
45
34
Oct 2015
52
19
8
Nov 2015
71
14
8
Dec 2015
66
34
6
Jan 2016
51
24
8
Feb 2016
47
15
8
Mar 2016
23
16
15
Apr 2016
27
12
18
May 2016
36
16
7
Jun 2016
35
27
17
Jul 2016
21
13
7
Aug 2016
26
13
5
Sep 2016
32
14
7
Oct 2016
23
29
5
Nov 2016
29
21
7
Dec 2016
18
16
10
Jan 2017
22
13
8
Feb 2017
6
17
6
Mar 2017
2
11
2
Apr 2017
1
38
1
May 2017
0
31
8
Jun 2017
7
20
4
Jul 2017
16
16
5
Aug 2017
35
32
0
Sep 2017
35
33
4
Oct 2017
36
36
6
Nov 2017
18
18
3
Dec 2017
22
22
3
Jan 2018
31
31
1
Feb 2018
21
20
2
Mar 2018
55
52
5
Apr 2018
34
34
3
May 2018
47
47
0
Jun 2018
34
34
6
Jul 2018
19
19
1
Aug 2018
26
26
13
Sep 2018
26
26
15
Oct 2018
18
17
10
Nov 2018
16
16
8
Dec 2018
27
27
10
Jan 2019
25
25
12
Feb 2019
18
19
8
Mar 2019
25
24
4
Apr 2019
22
22
8
May 2019
25
25
10
Jun 2019
20
20
6
Jul 2019
25
26
8
Aug 2019
31
30
6
Sep 2019
28
26
6
Oct 2019
32
33
6
Nov 2019
19
19
4
Dec 2019
12
12
2
Jan 2020
30
30
6
Feb 2020
24
24
9
Mar 2020
29
28
12
Apr 2020
21
21
3
May 2020
13
12
7
Jun 2020
19
19
5
Jul 2020
36
36
11
Aug 2020
14
14
7
Sep 2020
35
33
6
Oct 2020
34
34
7
Nov 2020
13
13
7
Dec 2020
14
12
6
Jan 2021
25
24
5
Feb 2021
20
20
7
Mar 2021
20
18
4
Apr 2021
18
18
1
May 2021
14
14
6
Jun 2021
28
28
1
Jul 2021
9
8
5
Aug 2021
18
18
9
Sep 2021
28
29
10
Oct 2021
27
25
18
Nov 2021
33
29
19
Dec 2021
30
32
15
Jan 2022
35
40
20
Feb 2022
15
13
4
Mar 2022
21
19
9
Apr 2022
15
15
8
May 2022
34
29
14
Jun 2022
25
26
6
Jul 2022
13
15
6
Aug 2022
35
35
11
Sep 2022
21
21
16
Oct 2022
22
22
8
Nov 2022
22
20
9
Dec 2022
16
16
9
Jan 2023
19
21
8
Feb 2023
32
34
2
Mar 2023
4
3
1
Apr 2023
12
11
4
May 2023
16
14
8
Jun 2023
23
21
11
Jul 2023
13
13
7
Aug 2023
13
13
8
Sep 2023
16
13
3
Oct 2023
26
27
5
Nov 2023
41
44
6
Dec 2023
65
65
3
Jan 2024
19
19
192
Feb 2024
14
14
123
Mar 2024
11
12
104
Apr 2024
19
18
20
May 2024
34
31
14
Jun 2024
51
50
9
Jul 2024
28
25
14
Aug 2024
34
31
6
Sep 2024
15
13
5
Oct 2024
16
16
11
Nov 2024
24
20
4
Dec 2024
35
25
12
Jan 2025
26
27
14
Feb 2025
46
44
15
Mar 2025
30
31
10
Apr 2025
36
36
12
Total
3964
2906
1390
Read the full text or download the PDF:
Subscribe
Log in
Log in via Institution
Log in via OpenAthens
Log in via CCMG
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?